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This work formulates submerged elastic structures using in-vacuo vibrational mode
expansions with which the acoustic impedance loading is derived based on radiation mode
theory. The displacement of natural modes on the normal direction is expanded as linear
combinations of a set of velocity radiation modes that the expansion coe$cients
characterize as the radiation characteristics of each vibration mode. This type of expansion
allows one to represent the surface pressure by the corresponding set of pressure radiation
modes. Thus, a symmetric impedance matrix associated with the natural vibration mode
expansions is derived when a variational increment is applied to the virtual work done by
the surface pressure against the normal displacement. The equation of the submerged
structures is obtained according to Hamilton's principles. By incorporating the description
of radiation modes, this equation of natural mode expansions is used to study the coupling
among vibration modal amplitudes due to the modal cross-impedances and the convergence
of near and far"eld solutions. In addition, a slender submerged spheroidal shell vibrating
axisymmetrically serves as a numerical example to demonstrate the e!ectiveness of the
analysis procedure. This numerical example reveals that the acoustic impedances decrease
with ascending mode numbers, causing the high order vibration modes to react
independently. Moreover, the convergence of the surface pressure and normal velocity is
examined on the basis of independent reaction of the vibration modes. Accurately predicting
far"eld solutions depends only on the convergence of the surface quantities whose
components pertain to strong radiation modes. The numerical example indicates that the
number of vibration modes used in the expansion for predicting far"eld solutions is less than
the modes required for the surface solution.
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1. INTRODUCTION

Responses of submerged structures depend on the coupled interactions of structural
vibrations and #uid loadings. A conventional means of handling structural equations is to
express the structural vibrations as the linear superposition of in-vacuo natural vibrational
modes. An acoustic radiation impedance matrix, in which the surface pressure and normal
velocity of the wetted surface are related, can describe acoustic loading. The coupling
condition of structures with acoustic loading inquires into the continuity of the structural
normal velocity with the acoustic particle normal velocity. Such an approach has received
considerable attention, particularly in terms of investigating #uid}structural interaction
problems (see references [1}6]).

Our earlier work [7] formulated the equation of submerged structures in such a manner
that the solved coe$cients of the equation are directly related to the description of acoustic
0022-460X/01/370245#19 $35.00/0 ( 2001 Academic Press
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radiation. The equation is formulated by selecting the normal displacement of the wetted
surface as the equation variable where the displacement variables other than the normal
one are eliminated by expressing these variables as a function of the normal displacement.
The connection of the normal velocity with acoustic radiation is established as the equation
is transformed into a generalized co-ordinate system using a set of velocity radiation modes
as a basis. The derivation of the radiation modes was based on a surface acoustic reciprocity
which is valid for the linear acoustics of non-viscous medium. The body is immersed in an
in"nite extend medium. Since the radiation modes manifest either radiating power into far-
"elds or production of an evanescent "eld near the surface [8], the modal amplitudes of the
radiation modes thus re#ect the radiation characteristics of the submerged elastic
structures.

In light of the above discussion, this work formulates structural acoustic problems in
terms of in-vacuo natural vibrational modes by incorporating the radiation mode theory
that the structural responses are directly related to radiation characteristics. An acoustic
loading matrix is derived based on the surface pressure and normal velocity expansions in
terms of pressure and velocity radiation modes. As is well known, an evanescent "eld caused
by a vibrating surface does not propagate acoustic power into the far"eld. The surface
responses can be characterized either as the component producing only an evanescent "eld
or the component radiating acoustic pressure into the far"eld [8]. Analysis is performed of
the coupling of the vibrational modal amplitudes due to the acoustic loading and the
associated radiation characteristics of the vibrational modes on the basis of the radiation
mode theory. This analysis is further applied to explore the convergence of the natural mode
expansions to the solutions of surfaces and far"elds.

2. FORMULATION OF SUBMERGED STRUCTURES

The potential and kinetic energies of an axisymmetrically submerged shell structure
under axisymmetric vibrations can be represented in terms of natural mode expansions [9]
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The symbols used in equations are listed in Appendix A. The factors Eh
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derived from a non-dimensionalized derivation. The surface normal displacement is
superposed by the natural modes.
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The virtual work due to the surface pressure and an external point force f
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against the
normal displacement is then expressed as
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The surface pressure can be related to the normal velocity using radiation mode theory
which has been presented in the previous studies [7, 8]. According to equation (2), the
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normal velocity is
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where the factor !ika represents non-dimensionalized time derivative so that the
mono-frequency oscillation time factor is taken as e!iut. Here, the symbol &i ' in the subscript

denotes the summation index; otherwise, it represents the imaginary value J!1
hereinafter. Let the mode shape on the normal direction /

n, i
be expanded as a linear

combination of velocity radiation modes U
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The combination coe$cients b
ij

can be computed using the bi-orthogonal condition of
pressure radiation modes W

j
and velocity radiation modes U

j
[7, 8], which is
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Details of the radiation mode theory can be found elsewhere [8]. Consequently, the
coe$cients b
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The values of b
ij

represent the participation factors of the velocity radiation modes U
j
,

j"1, 2, 3,2 to the wetted surface of the nth structural mode /
n, i

. Since the radiation
modes are derived based on the radiation capabilities so that the lowest order refers to the
most e$cient radiator, the coe$cients of b

ij
indicate the capability of a nature mode

radiating acoustic power to the far"eld (see Figure 1). Substituting equations (7) and (5) into
equation (4) leads to the expression of surface normal velocity as a linear combination of the
velocity radiation modes U

j
,

v
n
"c

0

N
f+

j/1
A

N
s+

i/1

!ikaq
i
b
ijB U

j
. (8)

Correspondingly, the surface pressure is [7, 8]
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where the factor (j
j
!i)/Jj2

j
#1 denotes a phase shift of the complex amplitude of

pressure radiation mode W
j
with respect to the complex amplitude of velocity radiation

mode U
j
.

The above expansions of surface quantities into respective radiation modes are valid for
the classical linear acoustic equations, that is, the linearized mass conservation, Euler's
equation, and adiabatic state equation. Speci"cally, the reciprocal principle for surface
acoustics, which is the foundation of the radiation mode theory [8], is true under the
conditions that,
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Figure 1. Expansion coe$cients b
ij

of the normal displacement of the "rst and 10th vibrational in-vacuo modes:
*m**, "rst natural mode; *d**, 10th natural mode.
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where the "rst equation is a linearized Euler's equation and the second equation is
a linearized mass conservation with the adiabatic state equation. In equation (10), v and
p denote particle velocity and "eld pressure respectively. For the situation of viscous #uid,
the linearized acoustic equation has to account for viscosity in the momentum equation as
well as a thermodynamic process, which is not an adiabatic process, making the expressions
of equation (10) complicated [10]. Thus, the modi"cation of the radiation modes to include
viscosity is not an obvious derivation and it is hard to assert at the present stage the
existence of radiation modes for viscous #uid.

Substituting equations (9) and (5) into equation (3) and using the bi-orthogonal condition,
equation (6), lead the virtual work to
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The equation of motion emerges when one applies Hamilton's principles
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where the generalized force fl is de"ned as

fl"af
0

/*
n,l

. (14)

Divide equation (12) by o
0
c2
0
a3 and use the identity c

d
"(E/o

s
)1@2 to make the equation

dimensionless:

A
o
s

o
0
B A

h
0
a B [!(ka)2#(Dl a)2] ql#(!ika)

N
f+

j/1

N
s+

i/1

q
i
b
ij

(j
j
!i) blj

"f Kl , l"1, 2,2, N
s
,

(15)

where fK is the corresponding dimensionless generalized force, and qK
i
has been substituted by

!u2q
i
for mono-frequency oscillation. Write the above equation into a matrix notation.
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in which the matrix [K] is a diagonal matrix with elements (o
s
/o

0
) (h

0
/a) [!(ka)2#(kl a)2]

and [Z] is a symmetric complex impedance matrix whose elements are
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Equations (18) and (19) are identical to the de"nition of equation (16) except for a factor of
one-half, which indicates that the acoustic loading term in equation (15) is equivalent to the
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radiation impedance. The correlation of the acoustic impedance matrix and surface
complex power is further examined in the following section.

3. NUMERICAL EXAMPLES OF MODAL IMPEDANCES FOR A SLENDER SPHEROIDAL
SHELL

In this section, we demonstrate the preceding formulation using a slender spheroidal shell
whose aspect ratio of major axis to minor axis a is four, and the thickness ratio of major
radius to the minor radius is 0)02. The material constants are that the ratio of dilatational
wave speed to sound speed c

0
is 3)386, the ratio of shell density to #uid density is 7)9, and the

Poisson ratio of the shell is 0)3. The shell vibrates axisymmetrically. The shell's dynamic
equation based on the classical thin shell theory is formulated using Hamilton's principles
incorporated with the displacement variables expanded by assumed mode expansions.
A detailed derivation can be found elsewhere [9]. A set of natural vibrational modes is
obtained by an eigenvalue problem analysis. Radiation mode analysis is performed by
considering surface acoustic power in which selecting velocity and pressure radiation modes
makes the complex power a diagonal representation [7]. Each radiation mode reacts
independently. Two point loads no

0
c2
0
a2 are applied at the two apexes of the shell vibrating

at the dimensionless frequency ka 1)8.
Figure 1 presents the b

ij
coe$cients of the "rst natural mode and an arbitrarily selected

10th mode where only the integer values are meaningful on the vibration modal numbers.
This "gure reveals that the lower order natural modes, which are selected as the "rst mode
for demonstration, contain lower order radiation modes. Meanwhile, the higher order
natural modes, in which the 10th mode is selected for illustration, exhibit more components
on high order radiation modes. As mentioned earlier, the real part of equation (18) denotes
the radiated power caused by the normal velocity c/

n, i
, where the summation with respect

to the index j in equation (18) represents the contribution due to the jth radiation mode U
j
.

The "rst few non-zero eigenvalues values at ka equal to 1)8 are 3)36, 2)18, 0)88, and 0)09,
and the rest are nearly zero. The detailed derivation can be found in the literature [8].
It was pointed out in literature that the magnitude of each eigenvalue indicates the
e!ectiveness of radiating acoustic power to the far"eld of that radiation mode. The set of
radiation modes is categorized into strong and weak radiation modes based on the
magnitude of eigenvalues. The present numerical example shows only the "rst four
radiation modes to be strong radiators. Consequently, Figure 1 reveals that the "rst natural
mode provides more e!ective power radiation than the 10th order natural mode due to
more signi"cant components on the lower order radiation modes for the "rst natural mode.
A close examination of the coe$cients b

ij
, which are not displayed herein, indicates that the

lower order vibrational modes generally exhibit more e!ectiveness in radiating power, while
the higher order modes provide more reactive powers, subsequently producing evanescent
"elds.

Figure 2 plots the magnitude of the dimensionless impedance matrix Z
il
, which is divided

by o
0
c
0
, at ka equal to 1)8. Only the values at the integer vibrational mode numbers are

meaningful, whereas the interpolated surface other than the integer points is only for
a better visualization. This "gure also reveals that the self-impedances Z

ii
are generally

larger than the cross-impedances Z
il

for a given modal number i. In addition, the
impedances approach zero values with increasing modal numbers. Figure 3 plots
the magnitudes and phases of the self-impedances versus mode numbers, which presents the
decreasing of the impedances with the phases approaching 903 as mode numbers become
large. This phenomenon re#ects the acoustic loading on the natural vibration modes



Figure 2. Magnitudes of the impedance matrix versus vibrational modal numbers of the spheroidal body at
ka"1)8.

Figure 3. The magnitudes and phases of the self-impedance versus vibrational modal numbers of the spheroidal
body at ka"1)8.

ACOUSTIC RADIATIONS FOR SUBMERGED ELASTIC STRUCTURES 251



252 P.-T. CHEN
becoming mass-like e!ects for relatively high order vibration modes while the loading tends
to be absent for high order modes.

4. NUMERICAL DEMONSTRATIONS OF THE COUPLED EQUATION FOR
SUBMERGED STRUCTURES

The coupled equation for the submerged structure is formed by equation (15) where the
structural inertia and sti!ness e!ects are represented by the diagonal matrix [K].
Meanwhile, the acoustic complex impedance matrix [Z] product of the dimensionless
frequency factor !ika represents the acoustic loading. Obviously, the modal amplitudes
MqN are coupled to each other due to the cross-impedances. Figure 4 plots dynamic sti!ness
matrix [K]#(!ika) [Z] of the spheroidal shell, where the upper subplot shows the
sti!ness from the "rst to 10th modes for a more detailed illustration. Again, only the integer
values on the vibrational modal numbers are meaningful. According to this "gure, the
structural inertia and sti!ness e!ects increasingly predominate the acoustic loading when
mode numbers increase. This phenomenon is also observed in Figure 2, indicating that the
values of the impedances decrease with the ascendant mode numbers while the
corresponding structure dynamic sti!nesses become large. Figure 5 shows the vibrational
modal amplitudes solved by equation (15), where the numbers of truncated natural
vibrational modes used to form equation (15) are chosen as 10, 20, 30 and 80 modes
respectively. The amplitudes obtained by using 80 expansion modes are convergent because
they approach zero when modes tend towards large numbers. Comparing the solved
amplitudes for using the various numbers of natural modes reveals that the modal
amplitudes for using 20, 30, and 80 mode expansions at low order vibrational mode
numbers are virtually identical and there is some discrepancy for using 10 mode expansions.
Figure 4. Magnitudes of the dynamic sti!ness matrix of the spheroid shell vibration at ka"1)8.



Figure 5. The vibrational modal amplitudes solved by using 10, 20, 30 and 80 vibrating modes for forming
equation (15). *d**, 80 modes; *#**, 10 modes; *m**, 20 modes; *j**, 30 modes.
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The convergence of the amplitudes can be examined from Figure 4. The magnitudes of the
dynamic sti!nesses, which include the acoustic impedances, exhibit a diagonal-dominated
feature in which the in#uence of the cross-impedances becomes less important with
ascending mode numbers. This feature indicates that the low order vibrational modes are
coupled together due to the cross-impedances and the higher order modes become
independent. According to equation (15), the equation of motion of the ith modal amplitude
q
i
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To examine how the cross-impedances a!ect the solved amplitudes, we consider the ratio r
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Figure 6. The dependence of the ratio r
ii

on the vibrational modal number for ka"1)8.
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which indicates that those modes react independently with other modes. Moreover, since
the cross-impedances are smaller than self-impedances (Figure 2), the ratio r

ij
has the

following inequality:

r
ij
)r

ii
. (24)

Consequently, the ratio of r
ii

can be an indicator of the degree to which a vibration modal
amplitude q

i
couples with other modes. Thus, the solution of the coupled equation, equation

(15), is divided into two categories: the modes coupled together due to comparable amounts
of acoustic cross-impedance loadings to the structural modal mass and sti!ness e!ects, and
the modes reacting independently for small values of r

ii
. Figure 6 shows the ratio r

ii
versus

mode number, having small values for the high order vibrational modes. The equation of
coupled modes for which the coe$cients r

ij
are "nite values is obtained from equation (15)

by maintaining the corresponding lower order mode coe$cients of [K] and [Z]. Let Mq
c
N

and Mq
u
N be the modal amplitudes of coupled and uncoupled modes respectively. The

corresponding partitioned equation of equation (15) thus becomes
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where the subscripts &&c'' and &&u'' denote the groups pertaining to coupled and uncoupled
modes. The above second sub-matrix equation is a nearly diagonal matrix equation since
the ratios of o!-diagonal terms are very small for high order modes (see equations (21) and
(23), and Figure 6). The uncoupled amplitudes Mq

u
N can be approximated by equation (22).
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Rewrite the "rst sub-equation as

([K
c
]#(!ika) [Z
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]) Mq

c
N"fK
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cu
Mq

u
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in which the second term of the right-hand side of the above equation represents the
coupling e!ect of the high order uncoupled modes to the low order coupled modes.
However, the coupling e!ect is negligible if one replaces Mq

u
N in the above equation with

equation (22) so that the contribution of the coupling e!ect is of the order of r
ij
, which is

only a slight amount for large indexes i and j. This not only makes the higher order modes
to become uncoupled, but also leads to a situation in which the solved amplitudes of
a reduced equation, which is the equation obtained by retaining only the coupled modes,
are approximately equal to the ones obtained by equation (15) without partitioning. The
computed amplitudes in Figure 5 show that the amplitudes are convergent for employing
modes more than 20. The corresponding r

ii
value in Figure 6 for 20 truncated natural modes

is approximately 0)01. This observation enables us to study the convergence of modal
truncation for the expansion used in equation (1) for the errors arising in the surface
response as well as the far"eld solution.

5. CONVERGENCE OF SURFACE AND FARFIELD SOLUTIONS

The normal displacement can be computed by the solved amplitudes MqN from equation
(2), and the corresponding surface pressure is obtained using equation (9). Figures 7 and 8
present the dimensionless normal displacement and surface pressure along the arclength of
Figure 7. Magnitudes of normal displacements for ka"1)8 obtained by the solved vibrational modal
amplitudes using 10, 20, 30, and 80 expansion natural models; *d**, 80 modes; *#**, 10 modes; *m**, 20
modes; *j**, 30 modes.



Figure 8. Magnitudes of surface pressure obtained for ka"1)8 by equation (9) using 10, 20, 30, and 80
expansion natural modes; *d**, 80 modes; *#**, 10 modes; *m**, 20 modes; *j**, 30 modes.
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a generator of the spheroid, where the displacement and surface pressure are divided by the
minor axis a and by o

0
c2
0

respectively. In the "gures, the dimensionless arclength is de"ned
as the ratio of the arclength from one apex to the total arclength. The expansion modes are
10, 20, 30, and 80 modes respectively. The symbol S in these "gures denotes the arclength
from one of the apexes and S

0
is the total arc length of the generator. Some minor

discrepancies occur when using various number modes, particularly near the regions of
apexes. The factor +N

i/1
(!ika) q

i
b
ij

in equation (8) represents modal amplitude
corresponding to the radiation mode U

i
. Let v

j
denote the amplitude,

v
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Correspondingly, the pressure radiation modal amplitude is obtained by multiplying

a phase shift factor j
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[8]. A previous study [7] has indicated that the

surface complex power of a vibrating surface can be identi"ed as
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where the real and imaginary parts are the radiated and reactive powers respectively.
Equation (27) indicates that only the radiation modes whose eigenvalues are not zero
contribute to the radiated power. Figure 9 displays the amplitudes v

j
computed by equation

(26) for the various natural number modes of 10, 20, 30, and 80 vibrational modes used in



Figure 9. Magnitudes of radiation modal amplitudes computed by equation (26) using 10, 20, 30, and 80
expansion natural modes; *d**, 80 modes; *#**, 10 modes; *m**, 20 modes; *j**, 30 modes.

ACOUSTIC RADIATIONS FOR SUBMERGED ELASTIC STRUCTURES 257
the expansions. This "gure reveals that radiation modal amplitudes computed by 20, 30 and
80 natural modes are generally identical, while some discrepancies occur for 10 expansion
natural modes. The radiation modes within the "fth mode are strong radiators as stated
previously, whose eigenvalues are not zero, causing e!ective radiations to the far "eld
indicated by equation (27). Consequently, the erroneous predication of the radiation modal
amplitudes q

i
for using 10 natural modes leads to an error at the far "eld. The solution at the

far "eld can be obtained by computing radiation patterns, which are obtained from
factoring out a simple source term eikr

r , where r is the distance of the far"eld point from the
origin. Figure 10 illustrates the far"eld radiation patterns, of which, the pattern obtained by
10 modes is di!erent from the patterns of 20, 30 and 80 modes. The vertical axis in this "gure
corresponds to the symmetric axis of the spheroidal body.

This example illustrates that the number of natural modes employed in equation (15) for
obtaining an accurate solution at the far"eld depends on the convergence of velocity
radiation modal amplitudes computed by equation (26). However, the number of natural
modes necessarily used in equation (15), to make the solved amplitudes q

i
convergent, is

determined by the ratio r
ii

such that a small value of r
ii

implies that the modes beyond the
ith natural mode are decoupled, which does not in#uence the solution of the modes below
the ith mode. This situation is depicted in Figure 5 indicating that when more than 20
modes are selected, the resulting amplitudes are virtually the same. The ratio r

ii
which

corresponds to the 20th mode is approximately to be 0)01. A strictly convergent answer is
required to use natural modes for amplitudes approaching zero, which is nearly 80 modes in
this example. However, using 20 natural modes still provides a convergent answer at the
far"eld (see Figure 10) and a good enough one at the surface (see Figures 7 and 8). Another
case for a vibrating frequency ka of 3)5 is also presented. Figure 11 plots the ratio r

ii
versus



Figure 10. Radiation patterns for ka"1)8 obtained by using 10, 20, 30, and 80 expansion natural modes;
*d**, 80 modes; *#**, 10 modes; *m**, 20 modes; *j**, 30 modes.

Figure 11. The dependence of the ratio r
ii

on the vibrational modal number for ka"3)5.
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Figure 12. Magnitudes of normal displacements for ka"3)5 obtained by the solved vibrational modal
amplitudes using 20, 40, 60, and 80 expansion natural modes; *d**, 80 modes; *#**, 20 modes; *m**, 40
modes; *j**, 60 modes.
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vibrational modal number. The value of r
ii

for the 40th mode is approximately 0)01.
According to the previous observations, using mode numbers beyond 40 would yield
acceptable answers at the surface and convergent results at the far "eld. Figures 12 and 13
display the normal displacement and surface pressure, respectively, indicating that the
results of using 20 modes present more discrepancy than that using 40, 60 and 80 modes,
whereas using 80 modes provides convergent answers for the natural modal amplitudes
approaching zero for high order modes. Accordingly, the far"eld solution for using 20
modes displayed in Figure 14 shows obvious deviations from others. Finally, Figure 15
presents the radiation pattern spectrum of the far"eld versus ka where the angle h ranging
from 0 to n is the polar angle de"ned in Figures 10 and 14, whose vertical axes
corresponding to h equal 0 and n. The plots show that maximum responses occur at ka
around 1)5.

It would be instructive to comment on the convergent answers of the present analysis.
A strict convergence refers to the expansion modal amplitudes MqN in equation (15)
approaching zero for high order nature modes. This requires much numerical e!ort due
to the use of many terms of natural mode expansions (see the numerical example
just demonstrated). A less expansive convergence can be regarded as the number of
modes employed to have convergent answers at the far"eld so that the coe$cient of r

ii
in

equations (22) and (24) is very small (0)01 for the present example). The small value of
r
ii

makes the natural modes beyond the ith mode decouple from the acoustic loading,
whose amplitudes are also small because the corresponding total dynamic sti!ness e!ects
due to the acoustic impedance loadings are very minor when compared with the dynamic
sti!ness attributed to the structure (see equations (22) and (23)). Consequently, one would



Figure 13. Magnitudes of surface pressure obtained for ka"3)5 by equation (9) for 20, 40, 60, and 80 expansion
natural modes; *d**, 80 modes; *#**, 20 modes; *m**, 40 modes; *j**, 60 modes.

Figure 14. Radiation patterns for ka"3)5 obtained by using 20, 40, 60, and 80 expansion natural modes;
*d**, 80 modes; *#**, 20 modes; *m**, 40 modes; *j**, 60 modes.
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Figure 15. Spectrum of radiation pattern versus ka.
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obtain acceptable answers for surface solutions and good convergent answers for far"eld
solutions.

6. CONCLUSIONS

The work presents a novel formulation for submerged structures using natural
vibrational mode expansions to analyze the structural responses and acoustic radiations.
The acoustic loading on the structures is derived as modal radiation impedances where the
surface pressure and normal velocity are related to each other using radiation mode theory.
In addition, the surface pressure and normal velocity are expanded by pressure and velocity
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radiation modes, respectively, where a bi-orthogonal condition computes the expansion
coe$cients for pressure and velocity. These two amplitudes of the pressure and velocity
have equal magnitude and phase shifts between them, which are determined by the
associated eigenvalues of the radiation modes. Correspondingly, a symmetric impedance
matrix is derived to describe the acoustic loading. The impedance matrix presents
a self-impedance dominating feature, namely that the self-impedances associated with the
vibrational modes are generally larger than the cross-impedances. The magnitudes of the
impedances decrease with ascending mode numbers while the corresponding phases
approach 903. The equation of the submerged structures is formed when the structural
modal dynamic sti!nesses are added to the acoustic impedances producing
a time-derivative factor. The coupled equation for the structural}acoustic system can be
partitioned in such a manner that the natural vibrational modes are categorized into
coupled and uncoupled modes, based on the ratios of self-impedances to the diagonal terms
of the coupled equation. Moreover, the surface response and far"eld pressure are obtained
by the solved modal amplitudes of the equation. The convergence of surface responses is
justi"ed the solved amplitudes by approaching zero, while the far"eld pressure is convergent
when the corresponding strong velocity modes are convergent. The weak radiation modal
amplitudes do not necessarily converge because the weak radiators only produce
evanescent "elds. The present formulation provides an e!ective means of analyzing the
coupling of vibrational modes for the submerged structures and the convergence of near
and far"eld solutions in relation to acoustic radiation modes.
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APPENDIX A: NOMENCLATURE

¹ kinetic energy of shell equations
< potential energy of shell equations
N

s
the number of expanded natural modes

N
f

the number of expanded radiation modes
E Young's modulus of the shell structures
h
0

thickness of the shells
a radius of minor axis of the spheroidal shells
o
s

density of the shells material
D
i
a non-dimensionalized natural frequencies of the shells

D
i

D
i
"X

i
/c

0X
i

circular natural frequencies of the shells
c
d

dilatational wave speed of the shell material (c
d
"(E/o

s
)1@2)

c
0

sound speed of the #uid
q
i

modal amplitude coe$cient for the natural mode expansions
w
n

normal displacement of the shell surfaces
d= virtual work done by surface pressure and an external point force
f
0

an external point force
/
n,i

normal displacement of the ith natural mode, the subscript &&n'' referring to the normal
direction

/*
n,i

the normal displacement value at the location of the applied external force
o
0

density of the #uid
p dimensionless surface pressure, which is de"ned as the pressure divided by o

0
c2
0
, similar

de"nition for the pressure variables
p
i

dimensionless surface pressure due to the normal velocity of ith natural mode /
n, ik acoustic wave number (k"u/c

0
)

u circular vibrating frequency
b
ij

expansion coe$cient of the normal displacement of the ith natural mode in terms of the
jth radiation modes

N
f

the number of expanded surface acoustic radiation modes
U

i
velocity radiation mode

W
i

pressure radiation mode
d
ij

Kroneck delta symbol
j
i

eigenvalue of the radiation mode
fl generalized force of the point force f

0
associated with the lth natural mode

fKl dimensionless generalized force
[K] a diagonal matrix de"ning the dynamic sti!ness in terms of natural mode expansions
[Z] complex impedance matrix
P
ij

dimensionless acoustic power attributed to the self-impedance of the ith natural mode
P
il

dimensionless complex acoustic power arisen from the cross-coupling impedance due to
the ith and lth natural modes

r
ij

coe$cient de"ning the coupling tendency of the ith and jth natural modes
P dimensionless complex surface acoustic power by a vibrating surface
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